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A B S T R A C T

The objective of this study was to identify myogenic proteins associated with caloric restriction and feed effi-
ciency in bovine longissimus dorsimuscle. Thirty-one Korean native steers were allocated to 100% ad libitum (n =
16) or 80% of ad libitum (n = 15) groups. Regardless of nutritional level, a subset of these animals were assigned
to groups with high or low feed efficiency (n = 5) at a later time point based on feed efficiency. A total of 7
differentially expressed proteins were found between groups with different nutrition levels while a total of 12
differentially expressed proteins were found between groups with different feed efficiencies. Interestingly, heat
shock protein beta-1 (HSPB1) was a differentially expressed protein that showed up in both results (nutrition
level and feed efficiency). It was up-regulated in both the 80% ad libitum group and the high feed efficiency
group. In in vitro study, mRNA expression level of HSPB1 was increased (P<0.05) after myogenic differ-
entiation. Results of this study suggest that HSPB1 might be a myogenic protein involved in response to caloric
restriction and feed efficiency in longissimus dorsi muscle of Korean native steer.

1. Introduction

Caloric restriction (CR) and feed efficiency (FE) could affect muscle
development. It has been reported that steers exposed to low nutrition
diet have enlarged muscle fibers compared to steers exposed to mod-
erate-nutrition diet (Long et al., 2010). Restricted feeding can lead to
the production of leaner carcasses (Murphy and Loerch, 1994). In
general, CR has profound effect on myogenic activity of muscle stem
cells such as satellite cell by altering their gene expression profile and
enhancing mitochondrial energy production in mice (Cerletti et al.,
2012). FE is an economically important factor in beef production.
Generally, FE (g gain/kg feed) is regarded as the inverse of feed con-
version ratio (FCR) or residual feed intake (RFI). Several FE studies
have investigated candidate genes associated with carcass character-
istics and meat quality in bovine (Baker et al., 2006; Al-Husseini et al.,
2014). Lancaster et al. (2009) have reported that gains in longissimus
dorsi muscle (LM) area are negatively correlated with FCR in growing
bulls. In addition, muscle development and cytoskeletal architecture
are modulated by gene expression which varies according to FE (Bottje
and Kong, 2013). In this regard, we considered that CR and FE might
affect muscle metabolism in LM of cattle. However, proteins involved in

CR and FE during muscle development in bovine have not been iden-
tified. Therefore, it is necessary to identify a physiological marker as-
sociated with these two factors (CR and FE) in LM. Moreover, two-di-
mensional gel electrophoresis (2-DE) and spontaneously immortalized
bovine embryonic fibroblasts (BEFS) could be used to identify genes
involved in CR and FE. These genes might be used in feed development
or animal selection for breeding, consequently increasing the pro-
ductivity of beef cattle. Taken together, the objectives of this study
were: 1) to use 2-DE to discover differentially expressed proteins
common in bovine LM according to CR and FE; 2) to predict the roles of
identified genes during myogenesis using BEFS.

2. Materials and methods

2.1. Animals, diets, experimental design, and sample collection

All experimental procedures involving animals were performed ac-
cording to the Animal Experimental Guidelines. They were approved by
the Animal Research Ethics Committee of Chungnam National
University. A total of 31 Korean native steers (292.0± 6.95 kg) at 10
months of age were used for 4 months for this study. It has been
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reported that intramuscular fat is mainly developed after 14 months of
age (Cianzio et al., 1985). Therefore, experimental period of 4 months
was used to investigate the effect of CR and FE on muscle development
stage. Thirty-one Korean native steers were randomly distributed to 16
pens (2 animals/pen). Of these 31 steers, 16 were provided normal feed
ad libitum while the remaining 15 were assigned to the CR group and
fed ad libitum of 80% of normal feed intake consumed on a previous
day. One steer was removed due to mechanical accident. During the 4-
month feeding trial, chemical composition of the experimental diet of
the normal group was 2.64 KJ/kg net energy for gain. Experimental
diets were calculated to meet the requirement of the National Research
Council (NRC, 2001) (Table 1). Individual daily feed intake was mea-
sured using an automated feeding machine (TMR FEEDER; Dawoon,
Incheon, Korea). Body weight was recorded monthly before morning
feeding. FE (g gain/kg intake) was calculated for the total experimental
period (Table 2). Animals were divided into low FE (LF: n = 5) and
high FE (HF: n = 5) groups. Those with median values were excluded.
Difference in FE of the two groups was 20 or more.

For proteomic analysis, each LM sample was obtained at age of 14
months (normal group: n = 7, CR group: n = 5, LF group: n = 5, and
HF group: n = 5) using a spring-loaded biopsy instrument (Biotech
Nitra, Republic of Slovakia). Whole blood sample (10 ml) was taken via
jugular veins after morning meal and added into a tube containing
EDTA (Becton and Dickson, New Jersey, USA).

2.2. Protein extraction and two-dimensional gel electrophoresis

Proteomic analysis was performed for pooled samples (100 µg)
containing equal quantities of protein from LM sample of each group to
identify differentially expressed proteins. Weinkauf et al. (2006) have
reported that sample pooling is efficient in 2-DE as it reduces non-
specific expression background. Differentially expressed spots with at
least a 2-fold change in intensity were subjected to ESI-Q-TOF/MS
analysis. Details of 2-DE and ESI-Q-TOF/MS analysis have been

previously described (Jin et al., 2012).

2.3. Blood variables

Whole blood (1 ml) was subjected to complete blood cell count
analysis using HM2 (VetScan HM2 Hematology System, Abaxis, USA).
Plasma albumin, blood urea nitrogen, glucose, total cholesterol, tri-
glyceride, total protein, and γ-glutamyl transpeptidase levels were
measured using Toshiba Accute Biochemical Analyzer-TBA-40FR
(Toshiba Medical Instruments, Otawara-shi, Tochigi-ken, Japan).

2.4. Cell culture

MyoD-overexpressing BEFS cells (BEFS-MyoD) undergoing differ-
entiation into myogenic lineages were used in this study. Details for cell
culture have been described previously (Yin et al., 2010),

2.5. Total RNA extraction and real-time PCR analysis

Details of RNA isolation, cDNA synthesis, and real-time PCR pro-
cedure have been described previously (Zhang et al., 2014). Primers
were designed using National Center for Biotechnology Information
Primer-BLAST (Table 3). Relative fold-changes were determined using
2-ΔΔCT method (Livak and Schmittgen, 2001). All data were normalized
against β-actin as housekeeping gene.

2.6. Statistical analysis

Data (6 observations for body weight, 147 observations for daily
feed intake, and 1 observation for blood composition) were presented
as mean with standard error of mean (SEM). They were analyzed with
independent-sample t-test. Real-time PCR data from BEFS cell lines
were presented as mean± SD. They were analyzed using Tukey's test.
Statistical analysis was performed using SPSS software package (SPSS
Inc., Chicago, IL, USA). P-values of less than 0.05 were considered
statistically significant.

3. Results

3.1. Growth performance

Body weight of steers in the restricted group with 80% of ad libitum
feed intake was 8.8% lower at 14 months of age compared to that of
steers in the normal group with 100% ad libitum intake. In addition,
feed intake, average daily gain, and FE at 9–14 months of age were
significantly different. Although steers in the HF group consumed
15.2% less feed on average than steers in the LF group, average daily
gain of steers in the HF group was greater (P= 0.08) than that in the LF
group. Therefore, HF steers utilized nutrients more efficiently than LF
steers (56.8 g/kg vs 31.4 g/kg for HF vs. LF groups, P<0.05) (Table 2).

Table 1
Nutrient composition (g/kg DM or as stated) of experimental diets.

Itema 14 months of age

DM (g/kg) 631
Crude protein 95
Ether extract 24
Neutral detergent fiber 585
Acid detergent fiber 413
Acid detergent lignin 61
NDICP 30
ADICP 17
Ash 82
Net energy for gain (KJ/kg) 2.64

a NDICP, neutral detergent insoluble crude protein; ADICP, acid detergent
insoluble crude protein.

Table 2
Effects of caloric restriction and feed efficiency on growth performance.

Nutritional levela Feed efficiencyb SEMc P-valuesd

Trait Age Normal Restricted HF LF N FE N FE

Initial BW, kg 10 294.4 289.3 287.6 307.2 9.80 19.05 ns ns
Final BW, kg 14 370.9 338.1 359.4 356.4 12.29 28.00 * ns
Daily feed intake (kg/d) 10–14 12.7 11.4 10.8 12.8 0.49 1.22 ** ns
Average daily gain (g/d) 10–14 642.9 410.1 603.4 413.4 45.44 78.19 ** *
Feed efficiency (g gain/kg feed) 10–14 51.0 36.6 56.8 31.4 4.39 5.70 ** **

a Steers were fed ad libitum (normal group, n = 16) or 80% of ad libitum (restricted group, n = 15).
b Steers were assigned to groups with high (HF, n = 5) and low feed efficiency (LF, n = 5) regardless of nutritional level.
c N, nutritional level; FE, feed efficiency.
d Probability values for the effect of nutritional level (N) and feed efficiency (FE); (* P<0.05, ** P<0.01, and ns = non-significant).
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3.2. Differentially expressed proteins of longissimus dorsi muscle according
to nutritional level and feed efficiency

Results of 2-DE are shown in Fig. 1. Between normal and CR groups,
one protein was up-regulated by CR while 6 proteins were down-
regulated by CR (Table 4). Between HF and LF groups, 7 proteins were
up-regulated by HF while 5 proteins were down-regulated by HF

(Table 5). Interestingly, heat shock protein beta-1 (HSPB1) was found
to be commonly up-regulated by both CR and HF.

3.3. mRNA expression of heat shock protein beta-1 during bovine
myogenesis

In order to investigate the relationship between HSPB1 and bovine
myogenesis, BEFS-MyoD cell line was used. Bovine myogenic differ-
entiation was confirmed by an increase in the expression level of
Desmin, a myogenic marker gene. The mRNA expression level of HSPB1
was increased (P<0.05) after initial- and post- myogenic differentia-
tion (Fig. 2).

3.4. Responses of complete blood cell count and metabolites to different
nutritional levels and feed efficiencies

Regarding complete blood count analysis, CR had no effect
(Table 6). However, the HF group had lower (P<0.05) hemoglobin
and hematocrit counts than the LF group. Regarding plasma metabo-
lites, the concentration of total protein was lower (P<0.05) in the CR
group compared to that in the normal diet group.

Table 3
Primers sequences, length and accession number.

Genea Accession numberb Sequence (5′ to 3′) Length (bp)

HSPB1 NM_001025569 F: CCTGGACGTCAACCATTC 77
R: GCTTGCCAGTGATCTCCAC

Desmin NM_001081575 F: GGACCTGCTCAATGTCAAGA 109
R: GGAAGTTGAGGGCAGAGAAG

Beta-actin NM_173979 F: GCGTGGCTACAGCTTCACC 54
R: TTGATGTCACGGACGATTTC

a HSPB1, heat shock protein beta-1.
b Database protein names and accession numbers: NCBI (http://www.ncbi.nlm.nih.

gov).

Fig. 1. 2-DE images derived from longissimus dorsi muscle (LM) of Korean native steer with (A) normal diet (N), (B) caloric restriction diet (CR), (C) high feed efficiency (HF), and (D) low
feed efficiency (LF). Arrows indicate differentially expressed protein spots.
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4. Discussion

4.1. Blood parameters

Blood variables are useful tools to monitor animal health or animal
stress. Our blood analysis results showed that CR did not have any
negative impact on animal health (Table 6). Animals in the LF group
had greater (P<0.05) hemoglobin and hematocrit counts than those in
the HF group. This might be due to the fact that LF steers are more
excited and bolder than HF steers under stressful situations (Koolhaas
et al., 1999). A positive relationship between RFI and hemoglobin or
hematocrit has been reported because contraction of the spleen might
occur after excitation (Gartner et al., 1969), consistent with our results.
Plasma total protein levels in the CR and HF groups were lower
(P< 0.05) than those of the normal diet and LF groups. Nevertheless,
total protein levels of our results were within normal ranges for cattle
(Kramer, 2002).

4.2. 2-DE analysis

Selsby et al. (2005) and Kim et al. (2015) have indicated that HSPB1
protein levels are increased by CR in soleus and plantaris muscle of rats
compared to those in rats exposed to ad libitum feeding. Phosphorylated
HSPB1 is also increased by serum starvation with low concentration of
glucose in L6 myoblasts (Kim et al., 2014). In CR study of Caenorhabditis
elegans, restriction of glucose metabolism can induce mitochondrial

Table 4
Proteins differentially expressed in caloric restricted Korean.

Spot intensity

Spota Nameb Accession numberb MW/pIc Score Sequence coverage (%) Normal Restricted Fold changed

1 Inner membrane protein, mitochondrial A7E3V3 83.05/6.37 51.03 31.38 0.02 0.01 2.03
2 Alpha-1-antiproteinase precursor P34955 46.10/6.05 14.64 16.35 0.13 0.06 2.33
3 Alpha-1 antiproteinase P34955 46.10/6.05 4.55 4.81 0.12 0.05 2.45
4 Annexin V P81287 36.09/4.85 47.64 50.63 0.16 0.05 3.33
5 MyoZ 1 Q8SQ24 31.67/9.17 32.44 33.99 1.08 0.39 2.73
6 Heat shock protein beta-1 Q3T149 22.40/5.98 22.18 40.80 0.29 0.62 0.47
7 Sulfotransferase, estrogen-preferring P19217 34.62/6.67 72.35 20.00 0.47 0.22 2.20

a The spot number refers to Fig. 1.
b Database protein names and accession numbers: UniProt (www.uniprot.org).
c Molecular weight (MW) and isoelectric point (pI) of each protein were determined by 2-DE.
d The expression ratios of spot intensity at ad libitum (normal group) versus 80% of ad libitum (restricted group).

Table 5
Proteins differentially expressed in Korean native steers differing in feed efficiency.

Spot intensity

Spota Nameb Accession numberb MW/pIc Score Sequence coverage
(%)

HF LF Fold changed

1 Myosin 1 Q9BE40 22.30/5.57 102.41 14.50 0.25 0.10 2.45
2 Stress-70 protein, mitochondrial Q3ZCH0 73.74/5.97 55.67 26.80 0.29 0.12 2.42
3 Enolase 3 Q3ZC09 47.10/7.60 47.55 28.80 0.21 0.48 0.43
4 Selectin L P98131 41.97/7.89 11.30 27.17 0.04 0.08 0.45
5 Capping protein muscle Z-line, beta P79136 33.74/6.01 26.51 19.93 0.23 0.08 3.11
6 Slow skeletal muscle troponin T Q8MKH6 31.28/5.71 67.49 8.32 0.48 0.23 2.10
7 GPD1 protein Q5EA88 37.65/6.42 34.20 29.74 0.17 0.45 0.38
8 Heat shock protein beta-1 Q3T149 22.39/5.98 22.18 40.80 0.18 0.07 2.71
9 Carbonic anhydrase II P00921 29.11/6.41 24.75 35.89 0.07 0.22 0.37
10 Chain L, Crystal Structure Analysis of Bovine Mitochondrial

Peroxiredoxin Iii
1ZYE_L 24.33/6.08 11.59 16.82 0.27 0.13 2.04

11 Triosephosphate isomerase Q5E956 26.69/6.45 43.92 36.95 0.47 1.27 0.37
12 Desmoplakin E1BKT9 33.24/6.47 101.97 12.63 0.25 0.09 2.84

a The spot number refers to Fig. 1.
b Database protein names and accession numbers: UniProt (www.uniprot.org).
c Molecular weight (MW) and isoelectric point (pI) of each protein were determined by 2-DE.
d The expression ratios of spot intensity at high feed efficiency (HF) versus low feed efficiency (LF) group.

Fig. 2. mRNA expression levels of heat shock protein beta-1 (HSPB1) during bovine
myogenesis or adipogenesis. (A) Representative photographs showing phase contrast of
BEFS-MyoD. Magnification, 20X. (B) mRNA expression of desmin and HSPB1 in BEFS-
MyoD cells at pre- (0 day), initial- (2 days), and post- differentiation (6 days). Values are
mean± SD (n = 3, a, b and c vs. control by Tukey's test).
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oxidative stress and ultimately strengthen its resistance of further oxi-
dative stress (Schulz et al., 2007). Considering these points, we cau-
tiously believe that upregulated HSPB1 might aid in physiological
adaptation to stress such as nutritional deficiency and minimize oxi-
dative damage to existing cellular components.

We also found that HSPB1 was upregulated in the HF group.
Mitochondrial reactive oxygen species production is known to be higher
in low RFI steers compared to that in high RFI steers (Kolath et al.,
2006). A proteomic study by Vincent et al. (2015) has revealed that
HSPB1 has higher abundance in the LM of low RFI pigs compared to
that in the LM of high RFI pigs, consistent with our 2-DE results. It has
been reported that HSPB1 expression is increased by oxidative stress in
skeletal muscle cells. Over-expression of HSPB1 protein can potentially
decrease reactive oxygen species generation (Mymrikov et al., 2011).
Therefore, increase in HSPB1 expression of HF indicates that HF ani-
mals might have some advantages in handling increased cellular stress.

Lametsch et al. (2006) have suggested that HSPB1 might have an
important role in hypertrophic muscle growth during compensatory
growth in pigs. For this reason, we speculated that upregulated HSPB1
protein expression in CR and HF groups might improve nutrient utili-
zation for myogenic differentiation by reducing mitochondrial oxida-
tive stress in LM of steers. Thus, an in vitro experiment was conducted to
predict the association between HSPB1 and bovine myogenesis using
BEFS-MyoD cells. Results of the in vitro experiment revealed that the
mRNA expression level of HSPB1 was increased after myogenic differ-
entiation. Mymrikov et al. (2011) have indicated that HSPB1 might be
able to regulate all elements of the cytoskeleton and remodel it. Ito
et al. (2001) have reported that HSPB1 is expressed highly before dif-
ferentiation of C2C12 myoblast and continuously accumulated after
myogenic differentiation of C2C12 cells into myotubes. Moreover,
HSPB1 and phosphorylation of HSPB1 play important roles in orga-
nizing myofibril structure and regulation of muscle mass. They are
correlated with muscle hypertrophy (Sugiyama et al., 2000; Kawano
et al., 2007; Hamelin et al., 2006).

5. Conclusion

Our results revealed that increased HSPB1 protein expression in LM
was associated with CR and HF. HSPB1 mRNA expression was also

increased after myogenic differentiation of BEFS-MyoD. Taken to-
gether, HSPB1 might be a key protein associated with CR and FE. It
might play an important role in skeletal muscle mechanism related to
energy utilization. It might be useful for improving the productivity of
steers.
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